Regulation of flowering in Arabidopsis by an FLC homologue.
نویسندگان
چکیده
The Arabidopsis FLC gene encodes a MADS domain protein that acts as a repressor of flowering. Late-flowering vernalization-responsive ecotypes and mutants have high steady-state levels of FLC transcript, which decrease during the promotion of flowering by vernalization. Therefore, FLC has a central role in regulating the response to vernalization. We have isolated an Arabidopsis gene, MAF1, which encodes a protein that is closely related to FLC. Overexpression studies demonstrate that MAF1 produces comparable effects to FLC, and likely has a similar function in the regulation of flowering. In contrast to FLC, however, MAF1 expression shows a less clear correlation with the vernalization response. In addition, MAF1 overexpression does not influence FLC transcript levels. Thus, MAF1 likely acts downstream or independently of FLC transcription. We further report identification of a cluster of four additional FLC-like genes in the Arabidopsis genome.
منابع مشابه
Differential regulation of FLOWERING LOCUS C expression by vernalization in cabbage and Arabidopsis.
Vernalization is required to induce flowering in cabbage (Brassica oleracea var Capitata L.). Since FLOWERING LOCUS C (FLC) was identified as a major repressor of flowering in the vernalization pathway in Arabidopsis (Arabidopsis thaliana), two homologs of AtFLC, BoFLC3-2 and BoFLC4-1, were isolated from cabbage to investigate the molecular mechanism of vernalization in cabbage flowering. In ad...
متن کاملRegulation of flowering time by the protein arginine methyltransferase AtPRMT10.
In plants, histone H3 lysine methyltransferases are important in gene silencing and developmental regulation; however, the roles of histone H4 methylation in plant development remain unclear. Recent studies found a type II histone arginine methyltransferase, AtPRTM5, which is involved in promoting growth and flowering. Here, we purified a dimerized plant-specific histone H4 methyltransferase, p...
متن کاملFRIGIDA LIKE 2 is a functional allele in Landsberg erecta and compensates for a nonsense allele of FRIGIDA LIKE 1.
The Landsberg erecta (Ler) accession of Arabidopsis (Arabidopsis thaliana) has a weak allele of the floral inhibitor FLOWERING LOCUS C (FLC). FLC-Ler is weakly up-regulated by the active San Feliu-2 (Sf2) allele of FRIGIDA (FRI-Sf2), resulting in a moderately late-flowering phenotype. By contrast, the Columbia (Col) allele of FLC is strongly up-regulated by FRI-Sf2, resulting in a very late-flo...
متن کاملThe Arabidopsis Paf1c complex component CDC73 participates in the modification of FLOWERING LOCUS C chromatin.
FLOWERING LOCUS C (FLC) is a key repressor of flowering in Arabidopsis (Arabidopsis thaliana) and is regulated, both positively and negatively, by posttranslational histone modifications. For example, vernalization (the promotion of flowering by cold temperatures) epigenetically silences FLC expression through repressive histone modifications such as histone H3 lysine-9 dimethylation (H3K9me2) ...
متن کاملPossible Role of MADS AFFECTING FLOWERING 3 and B-BOX DOMAIN PROTEIN 19 in Flowering Time Regulation of Arabidopsis Mutants with Defects in Nonsense-Mediated mRNA Decay
Eukaryotic cells use nonsense-mediated mRNA decay (NMD) to clear aberrant mRNAs from the cell, thus preventing the accumulation of truncated proteins. In Arabidopsis, two UP-Frameshift (UPF) proteins, UPF1 and UPF3, play a critical role in NMD. Although deficiency of UPF1 and UPF3 leads to various developmental defects, little is known about the mechanism underlying the regulation of flowering ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 126 1 شماره
صفحات -
تاریخ انتشار 2001